Abstract

Hořava’s quantum gravity at a Lifshitz point is a theory intended to quantize gravity by using traditional quantum field theories. To avoid Ostrogradsky’s ghosts, a problem that has been facing in quantization of general relativity since the middle of 1970’s, Hořava chose to break the Lorentz invariance by a Lifshitz-type of anisotropic scaling between space and time at the ultra-high energy, while recovering (approximately) the invariance at low energies. With the stringent observational constraints and self-consistency, it turns out that this is not an easy task, and various modifications have been proposed, since the first incarnation of the theory in 2009. In this review, we shall provide a progress report on the recent development of Hořava gravity. In particular, we first present four so far most-studied versions of Hořava gravity, by focusing first on their self-consistency and then their consistency with experiments, including the solar system tests and cosmological observations. Then, we provide a general review on the recent development of the theory in three different but also related areas: (i) universal horizons, black holes and their thermodynamics, (ii) nonrelativistic gauge/gravity duality and (iii) quantization of the theory. The studies in these areas can be easily generalized to other gravitational theories with broken Lorentz invariance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call