Abstract
Fullerene C84 is the third-most-abundant species after C60 and C70. In the past decade, a variety of C84-based clusterfullerenes have been well-studied experimentally, which otherwise do not include oxide clusterfullerenes (OCFs). In this work, we report a comprehensive inspection of Ho2O@C84, including its mass, spectroscopic, crystallographic, electrochemical (EC), and density functional theory (DFT) studies. Importantly, crystallographic data reveal an IPR cage of D2d(51591)-C84 with a linear endohedral Ho-O-Ho cluster, indicating that the compression effect of the C84 cage is less pronounced compared to that of a smaller cage. The experimentally observed structure is confirmed by DFT computations, which also verify its superior stability. Further studies suggest that Ho2O@C84 has reduced EC and HOMO-LUMO gaps compared to those of empty species, again demonstrating the effect of cluster encapsulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.