Abstract

A Ho-Kashyap (H-K) associative processor (AP) is shown to have a larger storage capacity than the pseudoinverse and correlation APs and to accurately store linearly dependent key vectors. Prior APs have not demonstrated good performance on linearly dependent key vectors. The AP is attractive for optical implementation. A new robust H-K AP is proposed to improve noise performance. These results are demonstrated both theoretically and by Monte Carlo simulation. The H-K AP is also shown to outperform the pseudoinverse AP in an aircraft recognition case study. A technique is developed to indicate the least reliable output vector elements and a new AP error correcting synthesis technique is advanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.