Abstract

Porous materials are widely used in construction, batteries, electrical appliances, and other fields. In order to meet the demand for flame-retardant and thermal insulation properties of organic porous materials, in this work, poly(vinyl alcohol)/calcium alginate/halloysite nanotube (PVA/CA/HNTs) aerogels with a hierarchical pore structure at micrometer-nanometer scales were prepared through freeze-drying using PVA as the substrate. The cross-linking reactions of PVA with H3BO3 and sodium alginate (SA) with CaCl2 constructed a double cross-linking network structure within the aerogel. And the HNTs were incorporated as reinforcing agents. The experimental results showed that the PVA/CA/HNTs aerogels had excellent flame-retardant and thermal insulation properties, and the heat release rate (HRR) and total heat release (THR) were effectively reduced compared to the PVA/CA aerogel. In addition, PVA/CA/HNTs aerogels had a high limiting oxygen index (LOI 60%) and low thermal conductivity (0.040 W/m·K). While their surface was subjected to a flame (800-1000 °C) for 25 min, the temperatures of the back surface were still lower than 80 °C. The low thermal conductivity of HNTs with hollow nanotube-like structures and the excellent flame-retardant properties of CA contributed to this phenomenon. The presence of HNTs and CA facilitated the formation of a dense carbon layer during combustion, enhancing the flame retardancy for PVA. In addition, the interpenetrating cross-linking network and the unique nanopores of HNTs collectively established a hierarchical pore structure within the gel, effectively impeding substance and heat exchange between the substrate and external environment. As the flame-retardant and thermal insulating material, PVA/CA/HNTs aerogels have a promising development prospect and potential in the fields of construction, transportation, electronics, and electrical appliances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.