Abstract

Long non-coding RNAs have drawn increasing research interest in cancer biology. This study aims to investigate the function roles and the underlying mechanism of HnRNPU-AS1 in Hepatocellular carcinoma (HCC). qRT-PCR was performed to detect the expression levels of HnRNPU-AS1, miR-556-3p, miR-580-3p in HCC tissues and cell lines. Western blot was used to determine protein levels of LC3-II, LC3-I, Beclin-1, P62, and SOCS6. Functional assays including CCK8 assay, colony formation assay, wound healing assay, Transwell assay were performed to evaluate the role of HnRNPU-AS1 in regulating the malignant phenotype of HCC cells. Dual luciferase reporter assay and RNA pull-down experiment were used to examined the RNA-RNA interaction. HnRNPU-AS1 expression was decreased in HCC tissues and cell lines, which was associated with poor prognosis in HCC patients. Overexpression of HnRNPU-AS1 could inhibit the proliferation, migration, invasion but promote autophagy in HCC cells. Two miRNAs (miR-556-3p and miR-580-3p) were identified as potential targets of HnRNPU-AS1 in lncBASE database, which were significantly upregulated in HCC tissues and cell lines. Cell experiments demonstrated the effects of HnRNPU-AS1 overexpression could be attenuated by miR-556-3p or miR-580-3p overexpression. We further revealed that SOX6 was the downstream target of HnRNPU-AS1/miR-556-3p or miR-580-3p axis. Xenograft mouse model validated the tumor-suppressor role of HnRNPU-AS1 overexpression in vivo. This study demonstrated the tumor suppressor function of HnRNPU-AS1 in HCC and identified the downstream molecules underlying its tumor suppressor function. Our results suggest that HnRNPU-AS1 suppresses HCC by targeting miR-556-3p and miR-580-3p/SOXS6 axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call