Abstract
Pancreatic cancer (PC) is one of the most lethal types of cancer due to its asymptomatic nature in the early stages and consequent late diagnosis. Its mortality rate remains high despite advances in treatment strategies, which include a combination of surgical resection and adjuvant therapy. Although these approaches may have a positive effect on prognosis, the development of chemo‐ and radioresistance still poses a significant challenge for successful PC treatment. Heterogeneous nuclear ribonucleoprotein C1/C2 (HNRNPC) and RhoA have been implicated in the regulation of tumour cell proliferation and chemo‐ and radioresistance. Our study aims to investigate the mechanism for HNRNPC regulation of PC radiation resistance via the RhoA pathway. We found that HNRNPC and RhoA mRNA and protein expression levels were significantly higher in PC tissues compared to adjacent non‐tumour tissue. Furthermore, high HNRNPC expression was associated with poor patient prognosis. Using HNRNPC overexpression and siRNA interference, we demonstrated that HNRNPC overexpression promoted radiation resistance in PC cells, while HNRNPC knockdown increased radiosensitivity. However, silencing of RhoA expression was shown to attenuate radiation resistance caused by HNRNPC overexpression. Next, we identified RhoA as a downstream target of HNRNPC and showed that inhibition of the RhoA/ROCK2‐YAP/TAZ pathway led to a reduction in DNA damage repair and radiation resistance. Finally, using both in vitro assays and an in vivo subcutaneous tumour xenograft model, we demonstrated that RhoA inhibition can hinder the activity of cancer‐related fibroblasts and weaken PC radiation resistance. Our study describes a role for HNRNPC and the RhoA/ROCK2‐YAP/TAZ signalling pathways in mediating radiation resistance and provides a potential therapeutic target for improving the treatment of PC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.