Abstract

TRPA1 is pivotal in cold hypersensitivity, but its regulatory mechanisms in inflammatory cold hyperalgesia remain poorly understood. We show here that the upregulation of SUMO1-conjugated protein levels in a complete Freund's adjuvant (CFA)-induced inflammatory pain model enhances TRPA1 mRNA stability, ultimately leading to increased expression levels. We further demonstrate that hnRNPA1 binds to TRPA1 mRNA, and its SUMOylation, upregulated in CFA-induced inflammatory pain, contributes to stabilizing TRPA1 mRNA by accumulating hnRNPA1 in the cytoplasm. Moreover, we find that wild-type hnRNPA1 viral infection in dorsal root ganglia neurons, and not infection with the SUMOylation-deficient hnRNPA1 mutant, can rescue the reduced ability of hnRNPA1-knockdown mice to develop inflammatory cold pain hypersensitivity. These results suggest that hnRNPA1 is a regulator of TRPA1 mRNA stability, the capability of which is enhanced upon SUMO1 conjugation at lysine 3 in response to peripheral inflammation, and the increased expression of TRPA1 in turn underlies the development of chronic inflammatory cold pain hypersensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call