Abstract

The human nonsense-mediated mRNA decay pathway (NMD) performs quality control and regulatory functions within complex post-transcriptional regulatory networks. In addition to degradation-promoting factors, efficient and accurate detection of NMD substrates involves proteins that safeguard normal mRNAs. Here, we identify hnRNP L as a factor that protects mRNAs with NMD-inducing features including long 3'UTRs. Using biochemical and transcriptome-wide approaches, we provide evidence that the susceptibility of a given transcript to NMD can be modulated by its 3'UTR length and ability to recruit hnRNP L. Integrating these findings with the previously defined role of polypyrimidine tract binding protein 1 in NMD evasion enables enhanced prediction of transcript susceptibility to NMD. Unexpectedly, this system is subverted in B cell lymphomas harboring translocations that produce BCL2:IGH fusion mRNAs. CRISPR/Cas9 deletion of hnRNP L binding sites near the BCL2 stop codon reduces expression of the fusion mRNAs and induces apoptosis. Together, our data indicate that protection by hnRNP L overrides the presence of multiple 3'UTR introns, allowing these aberrant mRNAs to evade NMD and promoting BCL2 overexpression and neoplasia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.