Abstract

Amyloid precursor protein (APP) is a transmembrane protein that plays a crucial role in the production of amyloid-β peptides. Any disruption in APP protein production, its mRNA decay rate or processing may result in abnormal production of amyloid-β peptides and subsequent development of protein aggregation diseases. Therefore, the equilibrium is crucial for neuronal function. An association study of heterogeneous nuclear ribonucleoprotein (hnRNP)-F and hnRNP H1 with APP was carried out in Neuro-2a (N2a) cells. In the present study, we found that hnRNP F and hnRNP H1 were significantly upregulated in the hippocampus of APP/PS1 mice. The changes in APP expression were positively associated with hnRNP F and hnRNP H1 when hnRNP F and hnRNP H1 were depleted or increased in N2a cells. Importantly, cross-linked RNA immunoprecipitation demonstrated binding affinities of hnRNP F and hnRNP H1 for App mRNA. Mechanistically, mRNA stability assay revealed that overexpression of hnRNP F or hnRNP H1 increases the APP level by stabilizing App mRNA half-life, implying that levels of hnRNP F and hnRNP H1 can change the production of APP. Further understanding of the regulatory mechanism of APP expression in association with hnRNP F and hnRNP H1 would provide insights into the mechanism underlying the maintenance of brain health and cognition. This study provides a theoretical basis for the development of hnRNP-stabilizing compounds to regulate APP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.