Abstract

The epithelial-mesenchymal transition (EMT), in which cells undergo a switch from a polarized, epithelial phenotype to a highly motile fibroblastic or mesenchymal phenotype is fundamental during embryonic development and can be reactivated in a variety of diseases including cancer. Spatio-temporally-regulated mechanisms are constantly orchestrated to allow cells to adapt to their constantly changing environments when disseminating to distant organs. Although numerous transcriptional regulatory factors are currently well-characterized, the post-transcriptional control of EMT requires continued investigation. The hnRNP E1 protein displays a major role in the control of tumor cell plasticity by regulating the translatome through multiple non-redundant mechanisms, and this role is exemplified when E1 is absent. hnRNP E1 binding to RNA molecules leads to direct or indirect translational regulation of specific sets of proteins: (1) hnRNP E1 binding to specific targets has a direct role in translation by preventing elongation of translation; (2) hnRNP E1-dependent alternative splicing can prevent the generation of a competing long non-coding RNA that acts as a decoy for microRNAs (miRNAs) involved in translational inhibition of EMT master regulators; (3) hnRNP E1 binding to the 3’ untranslated region of transcripts can also positively regulate the stability of certain mRNAs to improve their translation. Globally, hnRNP E1 appears to control proteome reprogramming during cell plasticity, either by direct or indirect regulation of protein translation.

Highlights

  • Epithelial-mesenchymal transition in tumor progression and metastasisMetastasis represents a critical step in tumor progression and accounts for more than 90% of cancer-induced mortality[1]

  • It has been shown that the epithelial-mesenchymal transition (EMT) is essential in embryonic development and in tumor metastasis and is among the mechanisms deemed critical in tumor cell plasticity

  • By using a genome-wide combinatorial approach involving expression, polysome profiling and RIP-Chip analysis, we have identified the members of the cohort of translationally regulated mRNAs that are induced during TGFβ-mediated EMT[53]

Read more

Summary

Introduction

Epithelial-mesenchymal transition in tumor progression and metastasisMetastasis represents a critical step in tumor progression and accounts for more than 90% of cancer-induced mortality[1]. It has been shown that the epithelial-mesenchymal transition (EMT) is essential in embryonic development and in tumor metastasis and is among the mechanisms deemed critical in tumor cell plasticity. These aspects include alternative splicing, mRNA stabilization, transcriptional control, and translation regulation.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.