Abstract
The main purpose of this paper is to investigate properties of an HNN extension of a semilattice, to give its equivalent characterizations and to discuss similarities with free groups. An HNN extension of a semilattice is shown to be a universal object in a certain category and an F-inverse cover over a free group for every inverse semigroup in the category. We also show that a graph with respect to a certain subset of an HNN extension of a semilattice is a tree and that this property characterizes an HNN extension of a semilattice. Moreover, we look into three subclasses: the class of full HNN extensions of semilattices with an identity, the class of universally E-unitary inverse semigroups and the class of HNN extensions of finite semilattices. The first class consists of factorizable E-unitary inverse semigroups whose maximal group homomorphic images are free. We obtain a generalization of the Nielsen–Schreier subgroup theorem to this class. The second consists of inverse semigroups presented by relations on Dyck words. An inverse semigroup in the third class has a relatively easy finite presentation using a Dyck language and has solvable word problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.