Abstract
Chromophobe renal cell carcinoma (ChRCC) is characterized by major changes in chromosomal copy number (CN). No model is available to precisely elucidate the molecular drivers of this tumor type. HNF1B is a master regulator of gene expression. Here, we report that the transcription factor HNF1B is downregulated in the majority of ChRCC and that the magnitude of HNF1B loss is unique to ChRCC. We also observed a strong correlation between reduced HNF1B expression and aneuploidy in ChRCC patients. In murine embryonic fibroblasts or ACHN cells, HNF1B deficiency reduced expression of the spindle checkpoint proteins MAD2L1 and BUB1B, and the cell-cycle checkpoint proteins RB1 and p27. Furthermore, it altered the chromatin accessibility of Mad2l1, Bub1b, and Rb1 genes and triggered aneuploidy development. Analysis of The Cancer Genome Atlas database revealed TP53 mutations in 33% of ChRCC where HNF1B expression was repressed. In clinical specimens, combining HNF1B loss with TP53 mutation produced an association with poor patient prognosis. In cells, combining HNF1B loss and TP53 mutation increased cell proliferation and aneuploidy. Our results show how HNF1B loss leads to abnormal mitotic protein regulation and induction of aneuploidy. We propose that coordinate loss of HNF1B and TP53 may enhance cellular survival and confer an aggressive phenotype in ChRCC. Cancer Res; 77(19); 5313-26. ©2017 AACR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.