Abstract
Heme oxygenase-1 (HO-1) is a key cytoprotective enzyme and an established marker of oxidative stress. Increased HO-1 expression has been found in the resident macrophages in the alveolar spaces of smokers. The lipid peroxidation product 4-hydroxynonenal (HNE) is also increased in the bronchial and alveolar epithelium in response to cigarette smoke. This suggests a link between a chronic environmental stress, HNE formation, and HO-1 induction. HNE is both an agent of oxidative stress in vivo and a potent cell signaling molecule. We hypothesize that HNE acts as an endogenously produced pulmonary signaling molecule that elicits an adaptive response culminating in the induction of HO-1. Here we demonstrate that HNE increases HO-1 mRNA, protein, and activity in pulmonary epithelial cells and identify ERK as a key pathway involved. Treatment with HNE increased ERK phosphorylation, c-Fos protein, JNK phosphorylation, c-Jun phosphorylation, and AP-1 binding. Whereas inhibiting the ERK pathway with the MEK inhibitor PD98059 significantly decreased HNE-mediated ERK phosphorylation, c-Fos protein induction, AP-1 binding, and HO-1 protein induction, inhibition of the ERK pathway had no effect on HNE-induced HO-1 mRNA. This suggests that ERK is involved in the increase in HO-1 through regulation of translation rather than transcription.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.