Abstract

In this study, we investigated the effect of high-molecular-weight glutenin subunits (HMW-GSs) on gluten quality and glutenin synthesis based on the cytological, physicochemical, and transcriptional levels using Xinong1718 and its three near-isogenic lines (NILs). Cytological observations showed that the endosperm of Glu-1Bh with Bx14+By15 accumulated more abundant and larger protein bodies at 10 and 16 days after anthesis than the other NILs. Glu-1Bh exhibited higher nitrogen metabolism enzyme gene expression and activity levels. The transcriptional levels of genes encoding HMW-GSs, protein folding, and transcription factors differed significantly among the NILs, and they were highest in Glu-1Bh. Our results demonstrate that variations in the expression patterns of nitrogen metabolism and glutenin synthesis-related genes may account for the differences in the accumulation of glutenin, glutenin macropolymers, and protein bodies, thereby affecting the structural and thermal stability of gluten. These findings provide novel insights into how different HMW-GSs might improve the quality of wheat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call