Abstract
hMSH2.hMSH6 heterodimer (hMutSalpha) and hMLH1.hPMS2 complex (hMutLalpha) have been implicated in the cytotoxic response of mammalian cells to a number of DNA-damaging compounds, including methylating agents that produce O(6)-methylguanine (O(6)MeG) adducts. This study demonstrates that O(6)MeG lesions, in which the damaged base is paired with either T or C, are subject to excision repair in a reaction that depends on a functional mismatch repair system. Furthermore, treatment of human cells with the S(N)1 DNA methylators N-methyl-N-nitrosourea or N-methyl-N'-nitro-N-nitrosoguanidine results in p53 phosphorylation on serine residues 15 and 392, and these phosphorylation events depend on the presence of functional hMutSalpha and hMutLalpha. Coupled with the previous demonstration that O(6)MeG.T and O(6)MeG.C pairs are recognized by hMutSalpha, these results implicate action of the mismatch repair system in the initial step of a damage-signaling cascade that can lead to cell-cycle checkpoint activation or cell death in response to DNA methylator damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.