Abstract

In off-line handwriting recognition, classifiers based on hidden Markov models (HMMs) have become very popular. However, while there exist well-established training algorithms which optimize the transition and output probabilities of a given HMM architecture, the architecture itself, and in particular the number of states, must be chosen “by hand”. Also the number of training iterations and the output distributions need to be defined by the system designer. In this paper we examine several optimization strategies for an HMM classifier that works with continuous feature values. The proposed optimization strategies are evaluated in the context of a handwritten word recognition task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.