Abstract

Hidden Markov Models (HMMs) have been successfully employed in the exploration and modeling of musical structure, with applications in Music Information Retrieval. This paper focuses on an aspect of HMM training that remains relatively unexplored in musical applications, namely the determination of HMM topology. We demonstrate that this complex problem can be effectively addressed through search over model topology space, conducted by HMM state merging and/or splitting. Once successfully identified, the HMM topology that is optimal with respect to a given data set can help identify hidden (latent) variables that are important in shaping the data set’s visible structure. These variables are identified by suitable interpretation of the HMM states for the selected topology. As an illustration, we present two case studies that successfully tackle two classic problems in music computation, namely (i) algorithmic statistical segmentation and (ii) meter induction from a sequence of durational patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.