Abstract

Paclitaxel (PTX) is one of standard chemotherapy drug for patients with metastatic castration-resistant prostate cancer (mCRPC). However, PTX resistance leads to treatment failures, for which the underlying molecular mechanisms remain exclusive. In this study, we reported that PTX-induced constant HMGB1 expression and release confers to PTX resistance in mCRPC cells via activating and sustaining c-Myc signaling. PTX upregulated HMGB1 expression and triggered its release in human mCRPC cells. Silencing HMGB1 by RNAi and blocking HMGB1 release by glycyrrhizin or HMGB1 neutralizing antibody sensitized the response of PTX-resistant mCRPC cells to PTX. Release HMGB1 activated c-Myc expression. Inhibiting c-Myc expression by RNAi or c-MyC inhibitor significantly enhance the sensitivity of PTX-resistant CRPC cells to PTX. Therefore, HMGB1/c-Myc axis is critical in the development of PTX resistance, and targeting HMGB1/c-Myc axis would counteract PTX resistance in mCRPC cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.