Abstract

High mobility group box chromosomal protein 1 (HMGB-1) is a widely studied, ubiquitous nuclear protein that is present in eukaryotic cells, and plays a crucial role in inflammatory response. However, the effects of HMGB-1 on human synovial fibroblasts are largely unknown. In this study, we investigated the intracellular signaling pathway involved in HMGB-1-induced IL-6 production in human synovial fibroblast cells. HMGB-1 caused concentration- and time-dependent increases in IL-6 production. HMGB-1-mediated IL-6 production was attenuated by receptor for advanced glycation end products (RAGE) monoclonal antibody (Ab) or siRNA. Pretreatment with c-Src inhibitor (PP2), Akt inhibitor and NF-κB inhibitor (pyrrolidine dithiocarbamate and L-1-tosylamido-2-phenylenylethyl chloromethyl ketone) also inhibited the potentiating action of HMGB-1. Stimulation of cells with HMGB-1 increased the c-Src and Akt phosphorylation. HMGB-1 increased the accumulation of p-p65 in the nucleus, as well as NF-κB luciferase activity. HMGB-1-mediated increase of NF-κB luciferase activity was inhibited by RAGE Ab, PP2 and Akt inhibitor or RAGE siRNA, or c-Src and Akt mutant. Our results suggest that HMGB-1-increased IL-6 production in human synovial fibroblasts via the RAGE receptor, c-Src, Akt, p65, and NF-κB signaling pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call