Abstract

BackgroundOral squamous cell carcinoma (OSCC) is the main type of oral cancer. Disturbing DNA repair is an invaluable way to improve the effectiveness of tumor treatment. Here, we aimed to explore the key enhancer drivers associated with DNA damage repair in OSCC cells.MethodsGene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA) and Kaplan-Meier analysis were applied to explore the relationship among DNA repair-related genes expression and clinical phenotypes based on The Cancer Genome Atlas (TCGA) database. HOMER software and Integrative Genomics Viewer were applied to identify and visualize enhancers using GSE120634. Toolkit for Cistrome Data Browser was applied to predict transcription factors. Human Protein Atlas Database was used to analyze the protein levels of transcription factors in OSCC and control tissues. Seventy-two OSCC patients were included in this study. qRT-PCR was used to detect transcription factor expression in OSCC and adjacent control tissues collected in this study. qRT-PCR and ChIP-qPCR were used to verify the binding of transcription factors to enhancers, and regulation of target genes transcription. Transcription factor knockdown and control cells were treated with cisplatin. CCK8 was used to detect cell viability and proliferation. Western blotting was implemented to detect the levels of DNA repair-related proteins. Transwell assay was used to detect cell invasion.ResultsDNA repair was positively associated with the OSCC metastatic phenotype. Patients in the cluster with high expression of DNA repair-related genes had a worse prognosis and a higher proportion of advanced stage, low-differentiation, alcohol consumption and smoking compared to the cluster with low DNA repair-related gene expression. Seventeen metastasis-specific enhancer-controlled upregulated DNA repair-related genes, with the top two upregulated genes being ADRM1 26 S proteasome ubiquitin receptor (ADRM1) and solute carrier family 12 member 7 (SLC12A7) were screened. High mobility group 20 A (HMG20A) was the key prognostic enhancer driver regulating metastasis-specific DNA repair-related genes, with higher expression in OSCC tissues than normal control tissues, and higher expression in metastatic OSCC tissues than non-metastatic OSCC tissues. HMG20A bound to the metastasis-specific enhancers of ADRM1 and SLC12A7, thereby promoting ADRM1 and SLC12A7 expression. Knockdown of HMG20A enhanced cisplatin sensitivity of cells, and inhibited OSCC cells from repairing DNA damage caused by cisplatin, as well as proliferation and invasion of OSCC cells.ConclusionHMG20A was identified as the key prognostic enhancer driver regulating DNA repair in OSCC cells, providing a new therapeutic target for OSCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call