Abstract

Background: Smoking predisposes to the development of atherosclerosis and of its complications. The mechanisms responsible for these effects are not completely understood. We have investigated whether nicotine might promote a proatherosclerotic state in human coronary endothelial cells (HCAECs), studying the role of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors in preventing these phenomena. Methods and Results: Real-time PCR showed that nicotine induced a dose-dependent increase in mRNA levels for vascular cellular adhesion molecule-1 (VCAM-1)/intercellular adhesion molecule-1 (ICAM-1). Fluorescent-activated cell sorting analysis showed that nicotine induced expression of functionally active VCAM-1/ICAM-1, since they increased leukocyte adherence to HCAECs. Oxygen free radicals, Rho A and nuclear factor ĸB (NF-ĸB) play a pivotal role in modulating these effects. Indeed, nicotine caused oxygen free radical production as well as activation of Rho A and NF-ĸB pathways, evaluated by malondialdehyde levels, pulldown assay and by electrophoretic mobility shift assay, respectively. Superoxide dimutase, Rho A (Y-27639) and NF-ĸB inhibitors (pyrrolidine dithiocarbamate ammonium, Bay 11-7082) suppressed nicotine effects on CAM expression. HMG-CoA reductase inhibitors prevented these nicotine-mediated effects by inhibiting free radical generation and by modulating activation of Rho A and NF-ĸB pathways. Conclusions: Nicotine promotes CAM expression on HCAECs, shifting them toward a proatherosclerotic state. These effects might explain, at least in part, the deleterious cardiovascular consequences of cigarette smoking. HMG-CoA reductase inhibitors play an important role in preventing these phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.