Abstract

Pathological hand tremor (PHT) is among the most common movement symptoms of several neurological disorders including Parkinson's disease and essential tremor. Extracting PHT is of paramount importance in several engineering and clinical applications such as assistive and robotic rehabilitation technologies. In such systems, PHT is modeled as the input noise to the system and thus there is a surge of interest in estimation an compensation of the noise. Although various works in the literature have attempted to estimate and extract the PHT, in this letter, first, we argue that the ground truth signal used in existing works to optimize the performance of tremor extraction techniques is not accurate enough, and thus the performance measures for the prior techniques are not perfectly reliable. In addition, most of the existing tremor extraction techniques impose unrealistic assumptions, which are, typically, violated in practical settings. This letter proposes a novel technique that for the first time incorporates deep bidirectional recurrent neural networks as a processing tool for PHT extraction. Moreover, we devise an intuitively pleasing training strategy that enables the network to perform not only online estimation but also online prediction of the voluntary hand motion in a myopic fashion, which is currently a significantly important unmet need for rehabilitative and assistive robotic technologies designed for patients with pathological tremor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.