Abstract

This study investigated whether (E)-5-hydroxy-7-methoxy-3-(2′-hydroxybenzyl)-4-chromanone (HM-chromanone) could counteract the high glucose level-induced blockade of insulin signaling in human HepG2 cells. Cells were pre-incubated with glucose (5.5 or 33 mM) and then incubated with a medium containing various concentrations of HM-chromanone. Assays for glucose uptake, glycogen synthesis, and glucose production were performed. Western blotting helped elucidate the underlying molecular mechanisms. High glucose concentration (33 mM) significantly increased p-IRS-1ser307 levels and decreased p-Akt levels. However, HM-chromanone significantly decreased p-IRS-1ser307 levels while increasing p-IRS-1tyr612 and Akt levels, which restored insulin signaling disturbed by high glucose concentration. HM-chromanone significantly increased p-AMPK levels, which were reduced by high glucose in HepG2 cells. Knockdown of AMPK using siRNA increased p-IRS-1ser307 and decreased p-Akt levels, even after treatment with HM-chromanone in high glucose concentration-treated cells. HM-chromanone stimulated glycogen synthesis by increasing p-GSK3βser9 and decreasing p-GSser641 levels in HepG2 cells under high glucose concentration; this effect was blocked by AMPK siRNA. HM-chromanone significantly decreased PEPCK, G6Pase, and hepatic glucose production, which were also blocked by AMPK siRNA. These results suggest that HM-chromanone could reverse insulin signaling blockade (induced by high glucose levels) through the activation of AMPK and stimulation of glucose uptake and glycogen synthesis in HepG2 cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call