Abstract

Oxidative stress is a major cause of hepatic insulin resistance. This study investigated whether (E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HM-chromanone), a homoisoflavonoid compound isolated from Portulaca oleracea L., alleviates insulin resistance and inhibits gluconeogenesis by reducing palmitate (PA)-induced reactive oxygen species (ROS)/c-Jun NH2-terminal kinase (JNK) activation in HepG2 cells. PA treatment (0.5mM) for 16h resulted in the highest production of ROS and induced insulin resistance in HepG2 cells. HM-chromanone, like N-acetyl-1-cysteine, significantly decreased PA-induced ROS production in the cells. HM-chromanone also significantly inhibited PA-induced JNK activation, showing a significant reduction in tumor necrosis factor and interleukin expression levels. Thus, HM-chromanone decreased the phosphorylation of Ser307 in insulin receptor substrate 1, while increasing phosphorylation of serine-threonine kinase (AKT), thereby restoring the insulin signaling pathway impaired by PA. HM-chromanone also significantly increased the phosphorylation of forkhead box protein O, thereby inhibiting the expression of gluconeogenic enzymes and reducing glucose production in PA-treated HepG2 cells. HM-chromanone also increased glycogen synthesis by phosphorylating glycogen synthase kinase-3β. Therefore, HM-chromanone may alleviate insulin resistance and inhibit gluconeogenesis by regulating PA-induced ROS/JNK activation in HepG2 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.