Abstract

This study investigated the effect of (E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HM-chromanone) on palmitate-induced insulin resistance and elucidated the underlying mechanism in L6 skeletal muscle cells. Glucose uptake was markedly decreased due to palmitate-induced insulin resistance in these cells; however, 10, 25, and 50 µM HM-chromanone remarkably improved glucose uptake in a concentration-dependent manner. HM-chromanone treatment downregulated protein tyrosine phosphatase 1B (PTP1B) and phosphorylation of c-Jun N-terminal kinase (JNK) and inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ), which increased because of palmitate mediating the insulin-resistance status in cells. HM-chromanone promoted insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation and suppressed palmitate-induced phosphorylation of IRS-1 serine. This activated phosphoinositide 3-kinase (PI3K) and stimulated protein kinase B (AKT) phosphorylation. Phosphorylated AKT promoted the translocation of Glucose transporter type 4 to the plasma membrane and significantly enhanced glucose uptake into muscle cells. Additionally, HM-chromanone increased glycogen synthesis through phosphorylating glycogen synthase kinase 3 alpha/beta (GSK3 α/β) via AKT. Consequently, HM-chromanone may improve insulin resistance by downregulating the phosphorylation of IRS-1 serine through inhibition of negative regulators of insulin signaling and inflammation-activated protein kinases in L6 skeletal muscle cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call