Abstract

This paper investigates the problem of H <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</inf> static output feedback (SOF) control for discrete-time switched linear systems with average dwell time switching. By using the multiple Lyapunov function technique, a switched SOF controller is designed such that the closed-loop system is exponentially stable and achieves a weighted L <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> -gain. Sufficient conditions for SOF control are derived and formulated in terms of linear matrix inequalities (LMIs). The minimal average dwell time and the corresponding SOF controller are obtained from the LMI conditions for a given system decay degree. Additionally, based on Finsler's lemma, two sets of slack variables with special structure are introduced to provide extra freedom in the LMI optimization problem, which leads to reduction of the conservatism and improvement of the performance. A numerical example is given to illustrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.