Abstract
In this paper, we deal with H <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</inf> filtering problem for a class of two-dimensional (2-D) discrete time-invariant systems with state delays described by local state-space (LSS) Fornasini-Marchesini (FM) second model. Based on the bounded real lemma of 2-D state-delayed systems, H <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</inf> filtering design is developed, such that the filtering error system is asymptotically stable and has H <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</inf> performance γ via LMIs’ feasibility. Furthermore, the minimum H <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</inf> norm bound γ can be obtained by solving a linear objective optimization problem. A numerical example is given to demonstrate the effectiveness and advantage of our result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.