Abstract
We introduce a family of bounded, multiscale distances on any space equipped with an operator semigroup. In many examples, these distances are equivalent to a snowflake of the natural distance on the space. Under weak regularity assumptions on the kernels defining the semigroup, we derive simple characterizations of the Holder–Lipschitz norm and its dual with respect to these distances. As the dual norm of the difference of two probability measures is the Earth Mover’s Distance (EMD) between these measures, our characterizations give simple formulas for a metric equivalent to EMD. We extend these results to the mixed Holder–Lipschitz norm and its dual on the product of spaces, each of which is equipped with its own semigroup. Additionally, we derive an approximation theorem for mixed Lipschitz functions in this setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.