Abstract

We investigate well posedness of the Cauchy problem for SG hyperbolic systems with non-smooth coefficients with respect to time. By assuming the coefficients to be Hölder continuous we show that this low regularity has a considerable influence on the behavior at infinity of the solution as well as on its regularity. This leads to well posedness in suitable Gelfand–Shilov classes of functions on R n . A simple example shows the sharpness of our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.