Abstract

HLA-DO (H2-O in mice) is an intracellular non-classical MHC class II molecule (MHCII). It forms a stable complex with HLA-DM (H2-M in mice) and shapes the MHC class II-associated peptide repertoire. Here, we tested the impact of HLA-DO and H2-O on the binding of superantigens (SAgs), which has been shown previously to be sensitive to the structural nature of the class II-bound peptides. We found that the binding of staphylococcal enterotoxin (SE) A and B, as well as toxic shock syndrome toxin 1 (TSST-1), was similar on the HLA-DO(+) human B cell lines 721.45 and its HLA-DO(-) counterpart. However, overexpressing HLA-DO in MHC class II(+) HeLa cells (HeLa-CIITA-DO) improved binding of SEA and TSST-1. Accordingly, knocking down HLA-DO expression using specific siRNAs decreased SEA and TSST-1 binding. We tested directly the impact of the class II-associated invariant chain peptide (CLIP), which dissociation from MHC class II molecules is inhibited by overexpressed HLA-DO. Loading of synthetic CLIP on HLA-DR(+) cells increased SEA and TSST-1 binding. Accordingly, knocking down HLA-DM had a similar effect. In mice, H2-O deficiency had no impact on SAgs binding to isolated splenocytes. Altogether, our results demonstrate that the sensitivity of SAgs to the MHCII-associated peptide has physiological basis and that the effect of HLA-DO on SEA and TSST-1 is mediated through the inhibition of CLIP release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call