Abstract

HIV-1 downregulates human leukocyte antigen A (HLA-A) and HLA-B from the surface of infected cells primarily to evade CD8 T cell recognition. HLA-C was thought to remain on the cell surface and bind inhibitory killer immunoglobulin-like receptors, preventing natural killer (NK) cell-mediated suppression. However, a recent study found HIV-1 primary viruses have the capacity to downregulate HLA-C. The goal of this study was to assess the heterogeneity of HLA-A, HLA-B, and HLA-C downregulation among full-length primary viruses from six chronically infected and six newly infected individuals from transmission pairs and to determine whether transmitted/founder variants exhibit common HLA class I downregulation characteristics. We measured HLA-A, HLA-B, HLA-C, and total HLA class I downregulation by flow cytometry of primary CD4 T cells infected with 40 infectious molecular clones. Primary viruses mediated a range of HLA class I downregulation capacities (1.3- to 6.1-fold) which could differ significantly between transmission pairs. Downregulation of HLA-C surface expression on infected cells correlated with susceptibility to in vitro NK cell suppression of virus release. Despite this, transmitted/founder variants did not share a downregulation signature and instead were more similar to the quasispecies of matched donor partners. These data indicate that a range of viral abilities to downregulate HLA-A, HLA-B, and HLA-C exist within and between individuals that can have functional consequences on immune recognition.IMPORTANCE Subtype C HIV-1 is the predominant subtype involved in heterosexual transmission in sub-Saharan Africa. Authentic subtype C viruses that contain natural sequence variations throughout the genome often are not used in experimental systems due to technical constraints and sample availability. In this study, authentic full-length subtype C viruses, including transmitted/founder viruses, were examined for the ability to disrupt surface expression of HLA class I molecules, which are central to both adaptive and innate immune responses to viral infections. We found that the HLA class I downregulation capacity of primary viruses varied, and HLA-C downregulation capacity impacted viral suppression by natural killer cells. Transmitted viruses were not distinct in the capacity for HLA class I downregulation or natural killer cell evasion. These results enrich our understanding of the phenotypic variation existing among natural HIV-1 viruses and how that might impact the ability of the immune system to recognize infected cells in acute and chronic infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call