Abstract

Cancer-associated mutations have the potential to generate neoantigens and elicit CD8-positive T-cell-dependent adaptive immune responses. There are currently no reports of CD8-positive T-cells with specificity for neoepitopes generated by EGFR mutations, which are driver oncogenes in a subset of patients with lung cancer. We used NETMHCpan 4.0 to identify putative protective human leukocyte antigen (HLA) class I allotypes that are predicted in silico to bind and present mutant EGFR-generated peptides on the basis of predefined criteria. We associated the presence or absence of these alleles with clinical outcomes in patients from The Cancer Genome Atlas with lung adenocarcinoma. We identified 12 HLA class I alleles that fulfilled the predefined criteria for being protective for EGFR p.L858R and six for EGFR p.E746_A750del, the two most common EGFR mutations in lung cancer. We validated the in silico predictions for peptide-HLA allele binding invitro. A third (12 of 36) of patients with mostly early stage lung adenocarcinoma in The Cancer Genome Atlas with either EGFR p.L858R or EGFR p.E746_A750del had at least one protective allele in their host genomes. More importantly, patients with protective alleles exhibited better disease-free (hazard ratio: 0.20, 95% confidence interval: 0.05-0.78) and overall survival (hazard ratio: 0.13, 95% confidence interval: 0.02-0.64), and this effect was independent of the EGFR mutation type, stage, age, and sex. Our data revealed that clinical outcomes were improved in patients with EGFR mutation-positive lung adenocarcinoma who harbored protective HLA class I alleles. Thus, immunity with specificity for mutant EGFR is possible in a subset of patients with early stage lung cancer and portends a better prognosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call