Abstract

Specific human leukocyte antigen (HLA) polymorphisms combined with certain drug administration strongly correlate with skin eruption. Abacavir hypersensitivity (AHS), which is strongly associated with HLA-B*57:01, is one of the most representative examples. Conventionally, HLA transmits immunological signals via interactions with T cell receptors on the cell surface. This study focused on HLA-mediated intracellular reactions in keratinocytes that might determine the onset of skin immunotoxicity by drug treatments. Abacavir exposure resulted in keratinocytes expressing HLA-B*57:01 exhibiting endoplasmic reticulum (ER) stress responses, such as immediate calcium release into the cytosol and enhanced HSP70 expression. In contrast, keratinocytes expressing HLA-B*57:03 (closely related to HLA-B*57:01) did not show these changes. This indicated that HLA-B*57:01 has a specific intracellular response to abacavir in keratinocytes in the absence of lymphocytes. Furthermore, abacavir exposure in HLA-B*57:01-expressing keratinocytes elevated the expression of cytokines/chemokines such as interferon-γ, interleukin-1β, and CCL27, and induced T lymphoblast migration. These effects were suppressed by ER stress relief using 4-phenylbutyrate (4-PB). HLA-B*57:01-transgenic mice also exhibited ER stress in epidermal areas following abacavir administration, and abacavir-induced skin toxicity was attenuated by the administration of 4-PB. Moreover, abacavir bound to HLA-B*57:01 within cells and its exposure led to HLA-B*57:01 protein aggregation and interaction with molecular chaperones in the ER of keratinocytes. Our results underscore the importance of HLA-mediated intracellular stress responses in understanding the onset of HLA-B*57:01-mediated AHS. We provide the possibility that the intracellular behavior of HLA is crucial for determining the onset of drug eruptions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call