Abstract

The identification of DNA-binding proteins (DBPs) has always been a hot issue in the field of sequence classification. However, considering that the experimental identification method is very resource-intensive, the construction of a computational prediction model is worthwhile. This study developed and evaluated a hybrid kernel alignment maximization-based multiple kernel model (HKAM-MKM) for predicting DBPs. First, we collected two datasets and performed feature extraction on the sequences to obtain six feature groups, and then constructed the corresponding kernels. To ensure the effective utilisation of the base kernel and avoid ignoring the difference between the sample and its neighbours, we proposed local kernel alignment to calculate the kernel between the sample and its neighbours, with each sample as the centre. We combined the global and local kernel alignments to develop a hybrid kernel alignment model, and balance the relationship between the two through parameters. By maximising the hybrid kernel alignment value, we obtained the weight of each kernel and then linearly combined the kernels in the form of weights. Finally, the fused kernel was input into a support vector machine for training and prediction.Finally, in the independent test sets PDB186 and PDB2272, we obtained the highest Matthew's correlation coefficient (MCC) (0.768 and 0.5962, respectively) and the highest accuracy (87.1% and 78.43%, respectively), which were superior to the other predictors. Therefore, HKAM-MKM is an efficient prediction tool for DBPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.