Abstract

A control theoretic approach is presented in this paper for both batch and instantaneous updates of weights in feed-forward neural networks. The popular Hamilton-Jacobi-Bellman (HJB) equation has been used to generate an optimal weight update law. The main contribution in this paper is that a closed form solutions for both optimal cost and weight update can be achieved for any feed-forward network using HJB equation. The proposed approach has been compared with some of the existing best performing learning algorithms. It is found as expected that the proposed approach is faster in convergence in terms of computational time. Some of the benchmark test data such as 8-bit parity, breast cancer and credit approval, as well as 2D Gabor function have been used to validate our claims.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.