Abstract

We formulate a new two-variable river environmental restoration problem based on jump stochastic differential equations (SDEs) governing the sediment storage and nuisance benthic algae population dynamics in a dam-downstream river. Controlling the dynamics is carried out through impulsive sediment replenishment with discrete and random observation/intervention to avoid sediment depletion and thick algae growth. We consider a cost-efficient management problem of the SDEs to achieve the objectives whose resolution reduces to solving a Hamilton-Jacobi-Bellman (HJB) equation. We also consider a Fokker-Planck (FP) equation governing the probability density function of the controlled dynamics. The HJB equation has a discontinuous solution, while the FP equation has a Dirac's delta along boundaries. We show that the value function, the optimized objective function, is governed by the HJB equation in the simplified case and further that a threshold-type control is optimal. We demonstrate that simple numerical schemes can handle these equations. Finally, we numerically analyze the optimal controls and the resulting probability density functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call