Abstract

A vibronic exciton model is developed to account for the spectral signatures of HJ-aggregates of oligomers and polymers containing donor-acceptor-donor (DAD) repeat units. In (DAD)N π-stacks, J-aggregate-promoting intrachain interactions compete with H-aggregate-promoting interchain interactions. The latter includes Coulombic coupling, which arises from "side-by-side" fragment transition dipole moments as well as intermolecular charge transfer (ICT), which is enhanced in geometries with substantial overlap between donors on one chain and acceptors on a neighboring chain. J-behavior is dominant in single (DAD)N chains with enhanced intrachain order as evidenced by an increased red-shift in the low-energy absorption band along with a heightened A1/A2 peak ratio, where A1 and A2 are the oscillator strengths of the first two vibronic peaks in the progression sourced by the symmetric quinoidal-aromatic vibration. By contrast, the positive H-promoting interchain Coulomb interactions operative in aggregates cause the vibronic ratio to attenuate, similar to what has been established in H-aggregates of homopolymers such as P3HT. An attenuated A1/A2 ratio can also be caused by H-promoting ICT which occurs when the electron and hole transfer integrals are out-of-phase. In this case, the A1 peak is red-shifted, in contrast to conventional Kasha H-aggregates. With slight modifications, the ratio formula derived previously for P3HT aggregates is shown to apply to (DAD)N aggregates as well, allowing one to determine the effective free-exciton interchain coupling from the A1/A2 ratio. Applications are made to polymers based on 2T-DPP-2T and 2T-BT-2T repeat units, where the importance of the admixture of the excited acceptor state in the lowest energy band is emphasized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.