Abstract

Polyamines are essential for tumor cell growth, and the polyamine pathway represents an attractive target for cancer treatment. Several polyamine transport proteins have been cloned and characterized in bacteria and yeast cells; however, the mechanism of polyamine entry into mammalian cells remains poorly defined, although a role for proteoglycans has been suggested. Here, we show that the HIV-Tat transduction peptide, which is known to enter cells via a proteoglycan-dependent pathway, efficiently inhibits polyamine uptake. Polyamine uptake-deficient mutant cells with intact proteoglycan biosynthesis (CHO MGBG) displayed unperturbed HIV-Tat uptake activity compared with wild-type cells, supporting the notion that HIV-Tat peptide interferes with polyamine uptake via competition for proteoglycan binding sites rather than a putative downstream transporter. HIV-Tat specifically inhibited growth of human carcinoma cells made dependent on extracellular polyamines by treatment with the polyamine biosynthesis inhibitor alpha-difluoromethylornithine; accordingly, the Tat peptide prevented intracellular accumulation of exogenous polyamines. Moreover, combined treatment with alpha-difluoromethylornithine and HIV-Tat efficiently blocked tumor growth in an experimental mouse model. We conclude that HIV-Tat transduction domain and polyamines enter cells through a common pathway, which can be used to target polyamine-dependent tumor growth in the treatment of cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.