Abstract

Patients infected with HIV-1 often exhibit cognitive deficits that are related to progressive neuronal degeneration and cell death. The protein Tat, which is released from HIV-1-infected cells, was recently shown to be toxic toward cultured neurons. We now report that Tat induces apoptosis in cultured embryonic rat hippocampal neurons. Tat induced caspase activation, and the caspase inhibitor zVAD-fmk prevented Tat-induced neuronal death. Tat induced a progressive elevation of cytoplasmic-free calcium levels, which was followed by mitochondrial calcium uptake and generation of mitochondrial-reactive oxygen species (ROS). The intracellular calcium chelator BAPTA-AM and the inhibitor of mitochondrial calcium uptake ruthenium red protected neurons against Tat-induced apoptosis. zVAD-fmk suppressed Tat-induced increases of cytoplasmic calcium levels and mitochondrial ROS accumulation, indicating roles for caspases in the perturbed calcium homeostasis and oxidative stress induced by Tat. An inhibitor of nitric oxide synthase, and the peroxynitrite scavenger uric acid, protected neurons against Tat-induced apoptosis, indicating requirements for nitric oxide production and peroxynitrite formation in the cell death process. Finally, Tat caused a delayed and progressive mitochondrial membrane depolarization, and cyclosporin A prevented Tat-induced apoptosis, suggesting an important role for mitochondrial membrane permeability transition in Tat-induced apoptosis. Collectively, our data demonstrate that Tat can induce neuronal apoptosis by a mechanism involving disruption of calcium homeostasis, caspase activation, and mitochondrial calcium uptake and ROS accumulation. Agents that interupt this apoptotic cascade may prove beneficial in preventing neuronal degeneration and associated dementia in AIDS patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.