Abstract
BackgroundOver the past few years, HIV transmission among men who have sex with men (MSM) in China has increased significantly. Chongqing, located in the southwest of China, has the highest prevalence of HIV among MSM in the country.MethodsBlood samples were taken from 894 MSM in Chongqing who had recently been diagnosed with HIV-1 infection and had not yet started getting treatment. In order to determine the distribution of HIV-1 subtypes, transmitted drug resistance, and assessments of molecularly transmitted clusters, we sequenced the Pol genes and employed them in phylogenetic analysis. The genetic distance between molecular clusters was 1.5%. To find potential contributing factors, logistic regression analyses were performed.ResultsOf the 894 HIV-1 pol sequences acquired from study participants, we discovered that CRF07_BC (73.6%) and CRF01_AE (19.6%) were the two most prevalent HIV-1 genotypes in Chongqing among MSM, accounting for 93.2% of all infections. In addition, CRF08_BC (1.1%), B subtype (1.0%), CRF55_01B (3.4%), and URF/Other subtypes (1.3%) were less frequently observed. Among MSM in Chongqing, transmitted drug resistance (TDR) was reported to be present at a rate of 5.6%. 48 clusters with 600 (67.1%, 600/894) sequences were found by analysis of the molecular transmission network. The distributions of people by age, sexual orientation, syphilis, and genotype were significantly differentially related to being in clusters, according to the multivariable logistic regression model.ConclusionDespite the low overall prevalence of TDR, the significance of genotypic drug resistance monitoring needs to be emphasized. CRF07_BC and CRF01_AE were the two main genotypes that created intricate molecular transmission networks. In order to prevent the expansion of molecular networks and stop the virus’s spread among MSM in Chongqing, more effective HIV intervention plans should be introduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.