Abstract

BackgroundThe exact mechanism underlying HIV-associated neurocognitive disorders still remains largely unresolved. However, viral genes (for example gp120 and tat) and their effect on cytokine/chemokine expressions have been linked with neuroinflammation. Conversely, interlekin-8 (IL-8) is a known proinflammatory chemokine and is known to be over-expressed in human brain microvascular endothelial cells in response to gp120. In this study, we sought to address whether HIV-1gp120 could affect IL-8 expression in astrocytes and whether the NF-κB pathway is involved in this phenomenon.MethodsSVGA astrocytes were transfected with a plasmid expressing HIV-1 pSyn gp120 JR-FL using Lipofectamine2000. The cells were harvested at different time points after transfection, and total cellular RNA was used for quantification of IL-8 using a real time PCR. IL-8 protein expression was also determined in supernatants collected at different time points after transfection. Involvement of the NF-κB pathway was addressed using both pharmacological inhibitors and an siRNA approach. In order to explore gene specificity, gp120-specific siRNAs were designed and IL-8 expression was monitored at both mRNA and protein levels.ResultsGp120 increased IL-8 expression both at mRNA and protein levels by 7.1 ± 1.04 and 2.41 ± 0.35 fold at 6 and 48 hours post-transfection, respectively. This increase was time-dependent and was abrogated by use of gp120-specific siRNA. We have also shown that the NF-κB pathway is involved in gp120-mediated IL-8 overexpression as IKK-2 and IKKβ inhibitors inhibited IL-8 expression by 63.5% and 57.5%, respectively at the mRNA level, and by 67.3% and 58.6% at the protein level. These results were also confirmed with use of NF-κB-specific siRNA.ConclusionThese results indicate that gp120 can modulate expression of a pro-inflammatory chemokine (IL-8) in astrocytes in a time-dependent manner with significant up-regulation at different times. This phenomenon is specific and is mediated by the NF-κB pathway.

Highlights

  • The exact mechanism underlying HIV-associated neurocognitive disorders still remains largely unresolved

  • HIV-1 gp120 induces the expression of IL-8 in time dependent manner Interleukin- (IL-) 8 is a major pro-inflammatory chemokine, which has been associated with neuroinflammatory mechanisms as well

  • We wanted to ascertain whether astrocytes increase IL-8 expression upon gp120 transfection

Read more

Summary

Introduction

The exact mechanism underlying HIV-associated neurocognitive disorders still remains largely unresolved. Gp120, a surface glycoprotein, plays an important role in attachment and viral entry [1,2,3] into host cells but is known to cause neurotoxicity through a variety of mechanisms. These include oxidative stress [4], white matter gliosis, loss of the structural integrity of blood brain barrier (BBB) [5] and neuronal cell loss [6]. Gp120 has been shown to increase IL-6 production in mixed human brain cell culture [15]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.