Abstract

The DNA damage response (DDR) is a signaling cascade that is vital to ensuring the fidelity of the host genome in the presence of genotoxic stress. Growing evidence has emphasized the importance of both activation and repression of the host DDR by diverse DNA and RNA viruses. Previous work has shown that HIV-1 is also capable of engaging the host DDR, primarily through the conserved accessory protein Vpr. However, the extent of this engagement has remained unclear. Here, we show that HIV-1 and HIV-2 Vpr directly induce DNA damage and stall DNA replication, leading to the activation of several markers of double- and single-strand DNA breaks. Despite causing damage and activating the DDR, we found that Vpr represses the repair of double-strand breaks (DSB) by inhibiting homologous recombination (HR) and nonhomologous end joining (NHEJ). Mutational analyses of Vpr revealed that DNA damage and DDR activation are independent from repression of HR and Vpr-mediated cell cycle arrest. Moreover, we show that repression of HR does not require cell cycle arrest but instead may precede this long-standing enigmatic Vpr phenotype. Together, our data uncover that Vpr globally modulates the host DDR at at least two independent steps, offering novel insight into the primary functions of lentiviral Vpr and the roles of the DNA damage response in lentiviral replication.IMPORTANCE The DNA damage response (DDR) is a signaling cascade that safeguards the genome from genotoxic agents, including human pathogens. However, the DDR has also been utilized by many pathogens, such as human immunodeficiency virus (HIV), to enhance infection. To properly treat HIV-positive individuals, we must understand how the virus usurps our own cellular processes. Here, we have found that an important yet poorly understood gene in HIV, Vpr, targets the DDR at two unique steps: it causes damage and activates DDR signaling, and it represses the ability of cells to repair this damage, which we hypothesize is central to the primary function of Vpr. In clarifying these important functions of Vpr, our work highlights the multiple ways human pathogens engage the DDR and further suggests that modulation of the DDR is a novel way to help in the fight against HIV.

Highlights

  • IMPORTANCE The DNA damage response (DDR) is a signaling cascade that safeguards the genome from genotoxic agents, including human pathogens

  • If engagement of the DDR was central to the function of Vpr, we would expect that Vpr proteins from these two diverse human lentiviruses would activate the DDR

  • We delivered human immunodeficiency virus (HIV)-1 Q23-17 Vpr and HIV-2 Rod9 Vpr to U2OS cells via a recombinant adeno-associated virus vector system expressing 3ϫ FLAG-tagged Vpr [6] and assayed for DDR markers 20 h postinfection by immunofluorescence (IF) for ␥H2AX, a marker for DNA double- and single-strand breaks (DSB and SSB, respectively) [45], RPA32, a marker of SSB [46], and 53BP1, a late marker of double-strand breaks (DSB) that is recruited to sites of damage by ␥H2AX [47]

Read more

Summary

Introduction

IMPORTANCE The DNA damage response (DDR) is a signaling cascade that safeguards the genome from genotoxic agents, including human pathogens. Primate lentiviruses encode accessory proteins that enhance viral replication [1]. This is achieved through direct interactions with host proteins to usurp their cellular functions or to antagonize their antiviral activity. Of the many potential roles assigned to Vpr, activation of the host DNA damage response (DDR) and subsequent cell cycle arrest are the only phenotypes conserved by diverse Vpr orthologs [6,7,8]. This conservation of function suggests that the engagement of the DDR is central to Vpr function. Due to the essential role of the DDR, a tremendous amount of cross talk and redundancy exists between these kinases [13]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call