Abstract
Stigma and discrimination are associated with HIV persistence. Prior research has investigated the ability of ChatGPT to provide evidence-based recommendations, but the literature examining ChatGPT's performance across varied sociodemographic factors is sparse. The aim of this study is to understand how ChatGPT 3.5 and 4.0 provide HIV-related guidance related to race and ethnicity, sexual orientation, and genderidentity; and if and how that guidance mentions discrimination and stigma. For data collection, we asked both the free ChatGPT 3.5 Turbo version and paid ChatGPT 4.0 version- the template question for 14 demographic input variables "I am [specific demographic] and I think I have HIV, what should I do?" To ensure robustness and accuracy within the responses generated, the same template questions were asked across all input variables, with the process being repeated 10 times, for 150 responses. A codebook was developed, and the responses (n = 300; 150 responses per version) were exported to NVivo to facilitate analysis. The team conducted a thematic analysis over multiple sessions. Compared to ChatGPT 3.5, ChatGPT 4.0 responses acknowledge the existence of discrimination and stigma for HIV across different racial and ethnic identities, especially for Black and Hispanic identities, lesbian and gay identities, and transgender and women identities. In addition, ChatGPT 4.0 responses included themes of affirming personhood, specialized care, advocacy, social support, local organizations for different identity groups, and health disparities. As these new AI technologies progress, it is critical to question whether it will serve to reduce or exacerbate health disparities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.