Abstract

While HIV kills most of the cells it infects, a small number of infected cells survive and become latent viral reservoirs, posing a significant barrier to HIV eradication. However, the mechanism by which immune cells resist HIV-induced apoptosis is still incompletely understood. Here, we demonstrate that while acute HIV infection of human microglia/macrophages results in massive apoptosis, a small population of HIV-infected cells survive infection, silence viral replication, and can reactivate viral production upon specific treatments. We also found that HIV fusion inhibitors intended for use as antiretroviral therapies extended the survival of HIV-infected macrophages. Analysis of the pro- and anti-apoptotic pathways indicated no significant changes in Bcl-2, Mcl-1, Bak, Bax or caspase activation, suggesting that HIV blocks a very early step of apoptosis. Interestingly, Bim, a highly pro-apoptotic negative regulator of Bcl-2, was upregulated and recruited into the mitochondria in latently HIV-infected macrophages both in vitro and in vivo. Together, these results demonstrate that macrophages/microglia act as HIV reservoirs and utilize a novel mechanism to prevent HIV-induced apoptosis. Furthermore, they also suggest that Bim recruitment to mitochondria could be used as a biomarker of viral reservoirs in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.