Abstract

HBV and HIV co-infection is a common occurrence globally, with significant morbidity and mortality. Both viruses lead to immune dysregulation including changes in NK cells, a key component of antiviral defense and a promising target for HBV cure strategies. Here we used high-throughput single cell analysis to explore the immune cell landscape in people with HBV mono-infection and HIV/HBV co-infection, on antiviral therapy, with emphasis on identifying the distinctive characteristics of NK cell subsets that can be therapeutically harnessed. Our data show striking differences in the transcriptional programs of NK cells. HIV/HBV co-infection was characterized by an overrepresentation of adaptive, KLRC2 expressing NK cells, including a higher abundance of a chemokine enriched (CCL3/CCL4) adaptive cluster. The NK cell remodeling in HIV/HBV co-infection was reflected in enriched activation pathways, including CD3ζ phosphorylation and ZAP-70 translocation that can mediate stronger ADCC responses and a bias towards chemokine/cytokine signaling. By contrast HBV mono-infection imposed a stronger cytotoxic profile on NK cells and a more prominent signature of 'exhaustion' with higher circulating levels of HBsAg. Phenotypic alterations in the NK cell pool in co-infection were consistent with increased 'adaptiveness' and better capacity for ADCC compared to HBV mono-infection. Overall, an adaptive NK cell signature correlated inversely with circulating levels of HBsAg and HBV-RNA in our cohort. This study provides new insights into the differential signature and functional profile of NK cells in HBV and HIV/HBV co-infection, highlighting pathways that can be manipulated to tailor NK cell-focused approaches to advance HBV cure strategies in different patient groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call