Abstract

Central nervous system (CNS) involvement usually occurs in individuals infected with human immunodeficiency virus type 1 (HIV-1). Evidence is now accumulating that neurons and astrocytes may be functionally compromised by exposure to viral components or cellular factors released from HIV-1-infected macrophages and/or microglia. We have previously reported that the HIV coat protein gp120 stimulates Na+/H+ exchange in primary cultured rat astrocytes, which, ultimately, results in the activation of a K+ conductance. In this report we characterize the electrophysiological and biophysical properties of the channels responsible for the gp120-induced increase in K+ conductance. These K+ channels had a relatively large unitary conductance (147 pS), were not gated by voltage, were sensitive to changes in H+ concentration at their cytosolic face, were specifically inhibited by apamin, and were insensitive to charybdotoxin and tetraethylammonium. The activation of these channels by gp120 is referable to cellular alkalinization subsequent to Na+/H+ exchange stimulation; gp120 failed to activate these K+ channels in the absence of external Na+ or in the presence of amiloride, an inhibitor of Na+/H+ exchange. Subsequent K+ loss from the astrocyte into the restricted extracellular space surrounding neurons can then lead to neuronal depolarization, activation of voltage-sensitive Ca2+ channels, and, eventually, cell death. Thus abnormal activation of astrocyte K+ channels by gp120 may contribute to the CNS pathophysiology associated with HIV-1 infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.