Abstract

Macrophages are an important natural target cell for HIV-1, but previous studies of virus entry into these cells are limited, and the involvement of membrane cholesterol and lipid rafts is unknown. Cholesterol disruption of macrophage membranes using four pharmacological agents acting by different mechanisms: methyl-β cyclodextrin, nystatin, filipin complex and Lovastatin, all significantly inhibited productive HIV entry and reverse transcription. The inhibitory effects of these drugs resulted in decreased virus release from infected cells, and could be substantially reversed by the addition of water-soluble cholesterol. The virus bound equally to cholesterol-disrupted cells even though HIV receptor expression levels were significantly reduced. Macrophage CD4 and CCR5 were found to partition with the detergent-resistant membranes with a typical raft-associating protein flotillin-1. HIV particles were observed co-localising with a marker of lipid rafts (CTB-FITC) early post infection. These data suggest that macrophage membrane cholesterol is essential for HIV entry, and implicate lipid raft involvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.