Abstract

Platelet-activating factor (PAF) has recently been demonstrated to be metabolized by B lymphocytes and to cause enhancement of Ig synthesis by Ig-secreting B lymphoblastoid cell lines. We have now examined some of the early activation events triggered by PAF binding to three Ig-secreting B cell lines, LA350 (IgM secreting), HSCE- (IgG secreting), and U266 (IgE secreting). After addition of 10(-7) to 10(-11) M PAF, but not equimolar concentrations of the inactive metabolite lyso-PAF, all three cell lines demonstrated rapid dose-dependent increases in free cytosolic Ca2+ concentrations ([Ca2+]i). The increases in [Ca2+]i resulted from both the release of Ca2+ from internal stores as well as transmembrane Ca2+ uptake. Addition of PAF triggered the rapid hydrolysis of phosphatidylinositol bisphosphate and accumulation of inositol phosphates. PAF also increased expression of the cell cycle-active genes c-fos and EGR2 in a dose-dependent fashion. The stimulated increases in [Ca2+]i and phosphatidylinositol bisphosphate hydrolysis and the increases in gene expression were all inhibited by the specific PAF receptor antagonist Web 2086. The LA350 cell line (which expresses surface IgM) was also shown to increase [Ca2+]i after addition of anti-IgM antibodies. Sequential addition of PAF or anti-IgM antibody in either order failed to reveal any evidence for heterologous desensitization. Furthermore, the PAF receptor antagonist did not affect anti-IgM induced changes in [Ca2+]i. These data provide evidence for the presence of functional PAF receptors on B lymphoblastoid cells and indicate a potential role for PAF in the regulation of B cell activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call