Abstract

The molecular mechanisms underlying learning and memory impairment in patients with HIV-associated neurological disease have remained unclear. Calcium/calmodulin-dependent kinase II (CaMKII) has key roles in synaptic potentiation and memory storage in neurons and also may have immunomodulatory functions. To determine whether HIV and simian immunodeficiency virus (SIV) induce alterations in CaMKII expression and/or activation (autophosphorylation) in the brain, we measured CaMKII alterations by quantitative immunoblotting in both an in vitro HIV/neuronal culture model and in vivo in an SIV-infected macaque model of HIV-associated neurological damage. Using primary rat hippocampal neuronal cultures treated with culture supernatants harvested from HIV-1-infected human monocyte-derived macrophages (HIV/MDM), we found that CaMKII activation declined after exposure of neurons to HIV/MDM. Consistent with our in vitro measurements, a significant decrease in CaMKII activation was present in both the hippocampus and frontal cortex of SIV-infected macaques compared with uninfected animals. In SIV-infected animals, total CaMKII expression in the hippocampus correlated well with levels of synaptophysin. Furthermore, CaMKII expression in both the hippocampus and frontal cortex was inversely correlated with viral load in the brain. These findings suggest that alterations in CaMKII may compromise synaptic function in the early phases of chronic neurodegenerative processes induced by HIV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.