Abstract

Based on a class of HIV-1 infection immunotherapy models, an HIV-1 infection model with pulsed immunotherapy was addressed. The non-negativity and uniform boundedness of the solutions to the pulsed immunotherapy model were studied with the pulsed differential equation theory. According to the Floquet multiplier theory and the comparison theorem for differential equations, the threshold conditions for the local and global asymptotic stability of the infection-free periodic solution as well as uniform persistence of HIV-1 were obtained. Through numerical simulation, the therapeutic effects of 3 different treatment regimens were compared, and the effectiveness of the pulsed immunotherapy was verified. The numerical results show that, the virus can be effectively controlled or eliminated theoretically when the drug input is large enough or the dosing interval is short properly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call